CERTIFICATION & ONGOING NIST REQUIREMENTS FOR HG CALIBRATION GAS GENERATORS

Jack Martin-RMB Consulting & Research

2013 EPRI CEMS Users Group Raleigh, North Carolina – May 9, 2013

Types Hg Gas Generators

- Elemental (Hg⁰) Hg Calibration Gas
 - Head-space Hg Gas Generator
 - Calibration Gas Cylinder
 - Permeation Source
- Oxidized (Hg²⁺) Hg Calibration Gas
 - Evaporative Generators
 - Conversion Generators

- EGU MATS Rule Requires NIST Standards
 - Section 3.2.1.2.1 of Appendix A of Subpart UUUUU
- Interim EPA Traceability Protocols
 - Elemental Hg Protocol
 - Issued July 2009
 - Oxidized Hg Protocol
 - Issued July 2009
- Developed via a collaboration between Hg Vendors, EPA, EPRI, Hg CEMS Users and NIST.

- Elemental Mercury (Hg⁰) Interim Protocol
 - Detailed initial certification criteria
 - Ongoing QA procedures
- Oxidized Mercury (Hg²⁺) Interim Protocol
 - Uses Hg⁰ as Anchor
 - Passing System Integrity Check
- Protocols designed such that Hg CEMS are based on elemental Hg calibration gas.

- EPA issued "Final" Interim Protocols in July 2009.
 - ONLY applicable to spans > 5ug/m3
 - MATS Rule limit is ~1.2 ug/m3
- Initial Steps for Hg⁰ Gas Generator
 - Manufacturer qualification test
 - Provides basic operating specifications for the elemental calibrator
- Bracketing test (i.e., the calibrator installed in your Hg CEMS compared against a Vendor Prime or Reference Calibrator.)

Bracketing Test

- "Bracketing" is the term used to describe the procedure used to determine the output of a Hg⁰ Gas Generator at certain setpoints.
- Comparison versus a "Reference" Device
 - NIST Prime
 - Vendor Prime
 - Reference Generator
- Source Hg⁰ Gas Generator (aka, User Prime) is only NIST certified at the setpoints used during the bracketing test

NIST Prime

- Tekran Model 3310 that has been certified using NIST's ID-ICP-MS
- Maintained by NIST in Gaithersburg, MD.

Vendor Primes

- Maintained by the Hg CEMS Vendors
- Periodically returned to NIST to verify outputs
 - Every 2 years
- Conduct inter-lab comparisons of multiple Vendor Primes to identify issues.

- Reference Generator
 - Certified by comparing output to a Vendor Prime
 - Requires a minimum 3x3x2 matrix
 - 3 Sample concentrations
 - 3 Comparisons at each sample concentration
 - 2 Number of Repetitions
 - Can be used to certify User Primes in the field
- User Prime
 - Hg⁰ Gas Generator used to perform daily and quarterly calibration checks
 - Certified by comparing output to a Vendor Prime or Reference Generator
 - 3x3x1 Matrix

- Calibrator Certification using Bracketing Procedure
 - Calibrator will be certified at 3 output concentrations
 - Low, Mid and High
- Interim Protocol Requires
 - Periodic checks
 - Recertification at all 3-levels every 24-months
- Types of Periodic Checks
 - Single-level comparison vs. Reference Calibrator
 - Hg Gas Cylinder
 - Permeation Source
 - Sorbent Tubes

Ongoing QA/QC Requirements

- User Prime Quarterly Checks
 - Comparison at a single-level against either a:
 - Reference Generator
 - Certified Hg Cylinder
 - A 3x1x1 bracket comparison
 - Collect sorbent-traps at a single-level
 - Minimum of 3 paired-sorbent traps
 - Collect a minimum of 15 liters
 - Collect a target mass of 100 nanograms (ng)

Ongoing QA/QC Requirements

- User Prime Monthly Checks
 - Comparison against a permeation source
 - Establish initial ratio of User Prime and Permeation source as soon as possible after User Prime certification
 - Determine response ratio on a monthly basis
 - Interim Protocol recommends weekly basis.
 - Tekran Hg CEMS has a model-specific procedure that is incorporated into the software.
 - Thermo working to develop permeation module
- Specification of ±5.0% from reference value
 - For all ongoing checks.

Oxidized Hg Gas Generators

- Two-types of Oxidized Hg Gas Generators
 - Evaporative Generators
 - Uses a NIST-traceable liquid solution of HgCl₂ as the Hg²⁺ source.
 - Nebulizes the liquid & mixes with air to form calibration gas
 - ~7 to 9% bias between the Evaporative Oxidized and Elemental outputs.
 - Manufacturer must supply the proper correction factor for the evaporative generator.

Oxidized Hg Gas Generators

- Two-types of Oxidized Hg Gas Generators
 - Elemental Conversion Hg²⁺ Gas Generators
 - Use Elemental Hg source to react with Chlorine to form HgCl₂
 - Must demonstrate at least 50% conversion from $Hg^0 \rightarrow Hg^{2+}$

NIST Certification of Hg²⁺ Gas Generators

- Note: The oxidized protocol does not establish true NIST traceability. NIST cannot measure Hg²⁺ directly.
 - Only establishes NIST traceability of key components of the calibrator.
 - Mass flow meter, pumps, HgCl₂ solution
- Oxidized Gas Generators were not intended to be the primary calibration device.
 - Intent of protocols was for all measurements to be based on NIST-traceable elemental Hg gas generators.
 - In essence, no adjustment of Hg CEMS response based on oxidized calibration gas.

RMB Consulting & Research, Inc.

NIST Certification of Hg²⁺ Gas Generators

- Interim Oxidized Protocol
 - Details how to calculate uncertainty of the Hg²⁺ Gas Generators
 - Provides minimal ongoing QA/QC requirements
 - No "bracket" tests associated with Hg²⁺ Gas Generators
 - Must have some source of NIST certified elemental calibration gas to meet ongoing QA/QC requirements

Ongoing QA/QC for of Hg²⁺ Gas Generators

- Evaporative Oxidized Generators
 - Pass a calibration error test using a zero and "certified" elemental upscale calibration gases.
 - Conduct and pass a system integrity check.
 - Monthly basis

Ongoing QA/QC for of Hg²⁺ Gas Generators

- Elemental Conversion Oxidized Generators
 - Operate in speciated mode (i.e., Hg⁰, Hg²⁺ & HgT)
 - Pass a calibration error test using a zero and "certified" elemental upscale calibration gases.
 - Meet system integrity criteria using HgT reading
 - Over 50% of HgT should be measured as Hg²⁺
 - Monthly basis

Ongoing QA/QC for of Hg²⁺ Gas Generators

- Performance is based on response versus a "certified" (i.e., a NIST traceable) elemental Hg calibration source
 - Certified elemental Hg gas generator
 - Certified elemental Hg gas cylinder
- For a Hg CEMS that uses Hg²⁺ Gas Generator as the daily calibration device:
 - Source will still need a certified Hg⁰ Gas Source to verify operation of Hg²⁺ Gas Generator.

Hg Calibration Gas Cylinders

- Hg Calibration Gas Cylinders
 - 6-month certifications
 - Expensive relative to traditional SO_2/NO_x cylinders
 - Requires regulators that have been conditioned to minimize Hg loss
 - Concentration ranges 1-60 μg/scm
 - Balance in either air or N₂
 - For Thermo Hg Freedom Systems w/out N₂ system must get with balance in air.
 - Not viable option for Thermo Hg Freedom Systems w/ N_2 systems.